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Talk outline

1. What is EnKF?

2. What is known about EnKF?

3. How can we use stochastic analysis to better
understand EnKF?
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The filtering problem

We have a deterministic model

dv

dt
= F (v) with v0 ∼ N(m0,C0) .

We will denote v(t) = Ψt(v0). Think of this as very high dimensional
and nonlinear.

We want to estimate v j = v(jh) for some h > 0 and j = 0, 1, . . . , J given
the observations

y j = Hv j + ξj for ξj iid N(0, Γ).
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We can write down the conditional
density using Bayes’ formula ...

But for high dimensional nonlinear
systems it’s horrible.
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Bayes’ formula filtering update

Let Y j = {y0, y1, . . . , y j}. We want to compute the conditional density
P(v j+1|Y j+1), using P(v j |Y j) and y j+1.

By Bayes’ formula, we have

P(v j+1|Y j+1) = P(v j+1|Y j , y j+1) ∝ P(y j+1|v j+1)P(v j+1|Y j)

But we need to compute the integral

P(v j+1|Y j) =

∫
P(v j+1|Y j , v j)P(v j |Y j)dv j .

For high dimensional nonlinear systems, this is computationally infeasible.
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The Ensemble Kalman Filter (EnKF)
is a lower dimensional algorithm.

(Evensen ’94)

EnKF generates an ensemble of
approximate samples from the

posterior.
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For linear models, one can draw samples,
using the Randomized Maximum

Likelihood method.
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RML method

Let u ∼ N(m̂, Ĉ ) and η ∼ N(0, Γ). We make an observation

y = Hu + η .

We want the conditional distribution of u|y . This is called an inverse
problem.

RML takes a sample

{û(1), . . . , û(K)} ∼ N(m̂, Ĉ )

and turns them into a sample

{u(1), . . . , u(K)} ∼ u|y
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RML method: How does it work?

Along with the prior sample {û(1), . . . , û(K)}, we create artificial
observations {y (1), . . . , y (K)} where

y (k) = y + η(k) where η(k) ∼ N(0, Γ) i.i.d

Then define u(k) using the Bayes formula update, with (û(k), y (k))

u(k) = û(k) + G (û)(y (k) − Hû(k)) .

Where the “Kalman Gain” G (û) is computing using the covariance of the
prior û.

The set {u(1), . . . , u(K)} are exact samples from u|y .
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EnKF uses the same method, but with an
approximation of the covariance in the

Kalman gain.
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The set-up for EnKF

Suppose we are given the ensemble {u(1)j , . . . , u
(K)
j } at time j . For each

ensemble member, we create an artificial observation

y
(k)
j+1 = y j+1 + ξ

(k)
j+1 , ξ

(k)
j+1 iid N(0, Γ).

We update each particle using the Kalman update

u
(k)
j+1 = Ψh(u

(k)
j ) + G (uj)

(
y
(k)
j+1 − HΨh(u

(k)
j )
)
,

where G (uj) is the Kalman gain computed using the forecasted
ensemble covariance

Ĉj+1 =
1

K

K∑
k=1

(Ψh(u
(k)
j )−Ψh(uj))T (Ψh(u

(k)
j )−Ψh(uj)) .
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Ĉj+1 =
1

K

K∑
k=1

(Ψh(u
(k)
j )−Ψh(uj))T (Ψh(u

(k)
j )−Ψh(uj)) .

David Kelly (NYU) EnKF December 11, 2014 11 / 28



The set-up for EnKF

Suppose we are given the ensemble {u(1)j , . . . , u
(K)
j } at time j . For each

ensemble member, we create an artificial observation

y
(k)
j+1 = y j+1 + ξ

(k)
j+1 , ξ

(k)
j+1 iid N(0, Γ).

We update each particle using the Kalman update

u
(k)
j+1 = Ψh(u

(k)
j ) + G (uj)

(
y
(k)
j+1 − HΨh(u

(k)
j )
)
,

where G (uj) is the Kalman gain computed using the forecasted
ensemble covariance
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What do we know about EnKF?
Not much.

Theorem : For linear forecast models,
ENKF → KF as N →∞

(Le Gland et al / Mandel et al. 09’).
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Ideally, we would like a theorem about
long time behaviour of the filter for a

finite ensemble size.
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Filter divergence

In certain situations, it has been observed (?) that the ensemble can
blow-up (ie. reach machine-infinity) in finite time, even when the model
has nice bounded solutions.

This is known as catastrophic filter divergence.

We would like to investigate whether this has a dynamical justification
or if it is simply a numerical artefact.

? Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).
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Assumptions on the dynamics

We make a dissipativity assumption on the model. Namely that

dv

dt
+ Av + B(v , v) = f

with A linear elliptic and B bilinear, satisfying certain estimates and
symmetries.

This guarantees uniformly bounded solutions.

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.
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Discrete time results

For a fixed observation frequency h > 0 we can prove

Theorem (AS,DK,KL)

If H = Γ = Id then there exists constant β > 0 such that

E|u(k)j |
2 ≤ e2βjhE|u(k)0 |

2 + 2Kγ2
(
e2βjh − 1

e2βh − 1

)

Rmk. This becomes useless as h→ 0
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Discrete time results with variance inflation
Suppose we replace

Ĉj+1 7→ α2I + Ĉj+1

at each update step. This is known as additive variance inflation.

Theorem (AS,DK,KL)

If H = Id and Γ = γ2Id then there exists constant β > 0 such that

E|e(k)j |
2 ≤ θjE|e(k)0 |

2 + 2Kγ2
(

1− θj

1− θ

)
where θ = γ2e2βh

α2+γ2
. In particular, if we pick α large enough (so

that θ < 1) then

lim
j→∞

E|e(k)j |
2 ≤ 2Kγ2

1− θ
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For observations with h� 1, we need
another approach.
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The EnKF equations look like a discretization

Recall the ensemble update equation

u
(k)
j+1 = Ψh(u

(k)
j ) + G (uj)

(
y
(k)
j+1 − HΨh(u

(k)
j )
)

= Ψh(u
(k)
j ) + Ĉj+1H

T (HT Ĉj+1H + Γ)−1
(
y
(k)
j+1 − HΨh(u

(k)
j )
)

Subtract u
(k)
j from both sides and divide by h

u
(k)
j+1 − u

(k)
j

h
=

Ψh(u
(k)
j )− u

(k)
j

h

+ Ĉj+1H
T (hHT Ĉj+1H + hΓ)−1

(
y
(k)
j+1 − HΨh(u

(k)
j )
)

Clearly we need to rescale the noise (ie. Γ).
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+ Ĉj+1H
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T (HT Ĉj+1H + Γ)−1
(
y
(k)
j+1 − HΨh(u

(k)
j )
)

Subtract u
(k)
j from both sides and divide by h

u
(k)
j+1 − u

(k)
j

h
=

Ψh(u
(k)
j )− u

(k)
j

h
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Continuous-time limit
If we set Γ = h−1Γ0 and substitute y

(k)
j+1, we obtain

u
(k)
j+1 − u

(k)
j

h
=

Ψh(u
(k)
j )− u

(k)
j

h
+ Ĉj+1H

T (hHT Ĉj+1H + Γ0)−1(
Hv + h−1/2Γ

1/2
0 ξj+1 + h−1/2Γ

1/2
0 ξ

(k)
j+1 − HΨh(u

(k)
j )
)

But we know that
Ψh(u

(k)
j ) = u

(k)
j + O(h)

and

Ĉj+1 =
1

K

K∑
k=1

(Ψh(u
(k)
j )−Ψh(uj))T (Ψh(u

(k)
j )−Ψh(uj))

=
1

K

K∑
k=1

(u
(k)
j − uj)

T (u
(k)
j − uj) + O(h) = C (uj) + O(h)
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Continuous-time limit

We end up with

u
(k)
j+1 − u

(k)
j

h
=

Ψh(u
(k)
j )− u

(k)
j

h
− C (uj)H

TΓ−10 H(u
(k)
j − vj)

+ C (uj)H
TΓ−10

(
h−1/2ξj+1 + h−1/2ξ

(k)
j+1

)
+ O(h)

This looks like a numerical scheme for Itô S(P)DE

du(k)

dt
= F (u(k))− C (u)HTΓ−10 H(u(k) − v) (•)

+ C (u)HTΓ
−1/2
0

(
dB

dt
+

dW (k)

dt

)
.
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Nudging

du(k)

dt
= F (u(k))− C (u)HTΓ−10 H(u(k) − v) (•)

+ C (u)HTΓ
−1/2
0

(
dB

dt
+

dW (k)

dt

)
.

1 - Extra dissipation term only sees differences in observed space

2 - Extra dissipation only occurs in the space spanned by ensemble
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1 - Extra dissipation term only sees differences in observed space

2 - Extra dissipation only occurs in the space spanned by ensemble
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Kalman-Bucy limit

If F were linear and we write m(t) = 1
K

∑K
k=1 u

(k)(t) then

dm

dt
= F (m)− C (u)HTΓ−10 H(m − v)

+ C (u)HTΓ
−1/2
0

dB

dt
+ O(K−1/2) .

This is the equation for the Kalman-Bucy filter, with empirical covariance
C (u). The remainder O(K−1/2) can be thought of as a sampling error.
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Continuous-time results

Theorem (AS,DK)

Suppose that{u(k)}Kk=1 satisfy (•) with H = Γ = Id. Let

e(k) = u(k) − v .

Then there exists constant β > 0 such that

1

K

K∑
k=1

E|e(k)(t)|2 ≤
(

1

K

K∑
k=1

E|e(k)(0)|2
)

exp (βt) .

David Kelly (NYU) EnKF December 11, 2014 24 / 28



Why do we need H = Γ = Id ?

In the equation

du(k)

dt
= F (u(k))− C (u)HTΓ−10 H(u(k) − v)

+ C (u)HTΓ
−1/2
0

(
dW (k)

dt
+

dB

dt

)
.

The energy pumped in by the noise must be balanced by contraction of
(u(k) − v). So the operator

C (u)HTΓ−10 H

must be positive-definite.

Both C (u) and HTΓ−10 H are pos-def, but this doesn’t guarantee the same
for the product!
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Testing stability on the fly

Suppose we can actually measure the spectrum of the operator

C (u)HTΓ−10 H

whilst the algorithm is running. If we know that it is pos-def, then the
filter must not be blowing up.

If we knew that
C (u)HTΓ−10 H ≥ λ(t) > 0 .

Then we can say even more (eg. stability).
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Summary + Future Work

(1) Writing down an SDE/SPDE allows us to see the important
quantities in the algorithm.

(2) Does not “prove” that catastrophic filter divergence is a
numerical phenomenon, but is a decent starting point.

(1) Improve the condition on H.

(2) If we can measure the important quantities, then we can test the
performance during the algorithm.

(3) Make use of controllability and observability.
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Thank you!

Well-posedness and accuracy of the ensemble
Kalman filter in discrete and continuous time.

D. Kelly, K.Law, A. Stuart.
Nonlinearity 2014.
www.dtbkelly.com
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